That a natural phenomenon occurs with precision that would require enormous computation to simulate isn’t proof of parallel universes.
EVERYTHING IN THE NATURAL WORLD IS THAT WAY!
Roll a ball down an inclined plane and measure the time to attoseconds. Now try and simulate the exact results. Friction and air resistance for that level of accuracy make it a computationally enormous problem.
OMG a rolling ball is evidence of parallel worlds!
For the downvoters analog computers were a thing. For my particular rolling ball example, while never used in practice, it’s a squaring calculator. You can program logic gates to calculate X^2 or roll a ball down an inclined plane and measure the result.
A quantum computer maintains several states simultaneously allowing for parallel computations faster than simulation with digital circuits. It’s the in nature of quantum states that allows parallel computations just like the nature of a rolling ball can calculate a square.
That a natural phenomenon occurs with precision that would require enormous computation to simulate
This isn’t the argument put forward by the article. Nothing about the precision of the measurement is made to be something of significance.
Also even if that was the case your analogy of it being like a rolling ball is totally inadmissible because a computation is not the same thing as a measurement.
Your attempt to liken the two shows some serious level of stubbornness in rejecting what possibly could be a very meaningful advancement in technology and metaphysics.
It’s totally ok to brush this article off as poorly written sensationalist crap but the problem is you don’t seem to understand the argument for why quantum computing capabilities are indicative of the possibility of a multiverse in the first place.
Setting up a rolling ball at a particular height to calculate a square is performing a computation in the same way setting up the voltages on a set of transistors that you preconfigured to give you the square of the inputs.
Without measurement, you don’t get the results of the ball rolling or the transistors. Reading the output of the transistors is the measurement of a physical system.
very meaningful advancement in technology
I didn’t criticize the technology at all!
It was 99+ years ago that Quantum Mechanics resulted in all manner of explanations for why QM is the way it is. This new chip does not change any of that. It is a technological advancement, not science or philosophy.
Dropping a ball is not an effective means of computing a square.
A quantum computer is such an effective means of performing its computations, that it brings into question how it can even be possible that the electronic signals forming the intermediate results can all simultaneously exist and be consumed in the first place.
You doubling down again on comparing these two just proves you don’t understand anything about the claims being made.
The whole “parallel computations” thing is really largely an oversimplification.
The “multiple universes” thing is the “many worlds theory of quantum mechanics” which is just one philosophical interpretation of statistics.
But also having a system that’s hard to simulate is kinda useless as a benchmark. I once attended a quantum computing talk where the speaker said “I can show you a large quantum system that is impossible to simulate classically” and they held up a rock “This rock is a quantum system that’s too big for us to simulate. It doesn’t do anything useful, but we can’t simulate it!”
To be fair, the title here draws more confidence than the actual quote from the Google engineer.
The actual quote, about one factor (speed):
It lends credence to the notion that quantum computation occurs in many parallel universes, in line with the idea that we live in a multiverse, a prediction first made by David Deutsch.
“Indicates” is too strong of a word, and was used to click bait.
Willow’s performance on this benchmark is astonishing: It performed a computation in under five minutes that would take one of today’s fastest supercomputers 1025 or 10 septillion years. If you want to write it out, it’s 10,000,000,000,000,000,000,000,000 years. This mind-boggling number exceeds known timescales in physics and vastly exceeds the age of the universe. It lends credence to the notion that quantum computation occurs in many parallel universes, in line with the idea that we live in a multiverse, a prediction first made by David Deutsch.
Seriously? Since he couldn’t be where he is today if he actually believed what he said, this guy just seems to be desperately saying anything to get media attention, including naming his department “Google Quantum AI”.
Modern supercomputers can do computations that would take a person computing on the fastest abacus 10 septillion years which vastly exceeds the age of the universe, so do we live in a multiverse squared?
I think the argument is (I’m no physicist) that quantum states and thus its computing happen in all universes and that’s why it is so fast. But if we think of parallel universes where each possible decision creates another one then quantum processing would inherently get faster and faster with time? Or would it get slower and slower with more and more universes using quantum processors and thus hogging quantum states?
Either way, sounds like marketing bullshit, like the big “AI” hype behind LLMs.