I think it’s been about a year? IIRC Intel only started using TSMC for their processors with Meteor Lake, which was released in late 2023.
I believe their discrete GPUs have been manufactured at TSMC for longer than that, though.
I think it’s been about a year? IIRC Intel only started using TSMC for their processors with Meteor Lake, which was released in late 2023.
I believe their discrete GPUs have been manufactured at TSMC for longer than that, though.
I use a lot of AI/DL-based tools in my personal life and hobbies. As a photographer, DL-based denoising means I can get better photos, especially in low light. DL-based deconvolution tools help to sharpen my astrophotos as well. The deep learning based subject tracking on my camera also helps me get more in focus shots of wildlife. As a birder, tools like Merlin BirdID’s audio recognition and image classification methods are helpful when I encounter a bird I don’t yet know how to identify.
I don’t typically use GenAI (LLMs, diffusion models) in my personal life, but Microsoft Copilot does help me write visualization scripts for my research. I can never remember the right methods for visualization libraries in Python, and Copilot/ChatGPT do a pretty good job at that.
Yeah we used to joke that if you wanted to sell a car with high-resolution LiDAR, the LiDAR sensor would cost as much as the car. I think others in this thread are conflating the price of other forms of LiDAR (usually sparse and low resolution, like that on 3D printers) with that of dense, high resolution LiDAR. However, the cost has definitely still come down.
I agree that perception models aren’t great at this task yet. IMO monodepth never produces reliable 3D point clouds, even though the depth maps and metrics look reasonable. MVS does better but is still prone to errors. I do wonder if any companies are considering depth completion with sparse LiDAR instead. The papers I’ve seen on this topic usually produce much more convincing pointclouds.